機械設計のための総合力学

概要

機械設計/機械製図の新たな品質及び製品の創造をめざして、高付加価値化に向けた機械の 力学や材料の強度設計、また機械要素設計(ねじ・軸・軸受・歯車)など詳細設計に必要な 力学の全般を習得します。

対象者

機械設計製図関連業務に従事する方で、機械設計に関する力学を再確認したい方

コース番号	日 程	時 間	日数	総時間	定員	受講料(稅込)
4M001	8/19(火)、8/20(水)、8/21(木)	9:00~16:00	3 日	18H	10人	15,000円

内容

- 1. 機械
 - (1) 仕事と動力
 - (2) ニュートンの運動の法則
 - (3) 摩擦と機械の効率
- 2. 材料の静的強度設計
 - (1) 材料の機械的特性(応力とひずみ)
 - (2) 応力とモーメント
 - (3) 安全率と許容応力
- 3. 機械要素設計
 - (1) ねじ
 - (2) 軸
 - (3) 軸受
 - (4) 歯車
- 4. 課題演習

回転運動
トルク: <i>T</i> [N·m]
慣性モーメント: <i>J</i> [kg・m ²]
角変位: <i>θ</i> [rad]
角速度: *微分表示 $\omega = \frac{d\theta}{dt}$ [rad/s]
角加速度: *微分表示 $\alpha = \frac{d\omega}{dt} [\mathrm{rad/}s^2]$
トルク・モーメント: $T = J\alpha [N \cdot m]$
運動エネルギー: $E_2 = \frac{1}{2}J\omega^2 [J]$
角運動量: $J\omega = \frac{dE_2}{d\omega} [\text{kg} \cdot \text{m}^2/s]$
動力(仕事率): $P_2 = T\omega \text{ [W]}$

直線運動、回転運動における物理量比較

使用機器 関数電卓

使用テキスト 自作テキスト

受講者持参品 筆記用具、関数電卓

講師北陸職業能力開発大学校講師

ステップアップ

受 講 者 の 声 🏿 応用力や強度を計算することで、 より安全でトラブルの少ない設計ができるようになる。

事業主の声

学んだことを生産設備設計に活かしてもらうことを期待している。