電気エネルギー制御科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	オーディオシステムの製作 ーグラフィック・イコライザの 製作ー	伊藤 実甫	本研究では、オーディオシステムを7年かけて 完成させる計画である。1年目はスピーカに大 電流を流すメインアンプの製作を行った。2年 目は特定の周波数の信号の増幅や逓減を行 い、好みの音質に変えることができるグラフィッ ク・イコライザの製作を行った。	SAME CONSTR	川守田 聡
2	オーディオシステムの製作 ーピークレベル・インディ ケータの製作ー	木内 健太郎	発光ダイオードアレイによる電圧レベルメータ を利用し、7つの各周波数成分の電圧レベル を視覚的に認識できる回路の製作を行った。	# MANAGES 1001101	川守田 聡
3	インソールヒーターの研究	落合 律	低温度下で使用するための防寒用靴の開発にあたり、一番の問題点は長時間の動作を可能とするとである。ヒーター線の選定を行い、2次電池を充電するための充電回路の製作と特性測定、さらにヒーターに流す電流を制御する制御回路の製作を行った。		川守田 聡
4	ステッピングモータを用いた 自動倉庫の製作	太田 宙斗 重田 凌 中嶋 悠太	PLC高機能ユニットを利用した実用的な装置の製作をテーマとして、電子部品用自動倉庫の設計・製作した。アクチュエータとしてステッピングモータを使用し、PLCの位置決めユニットによる高速・精密な位置決め制御を行う。また、ボールねじやタイミングベルト等のメカニズムに関しての設計、筐体の製作など実習を通して当科で学習した内容を総合的に活用したものづくりを行うことを目的としている。		栗秋 亮太
5	ブラシレスDCモータを用い た電動車両の製作	栫 颯人 山崎 哲平 若菜 健吾	ブラシレスDCモータは、技術的優位性と高効率性により既存のブラシ付きDCモータから置き換わりつつある。これらは小型のモータだけでなく、自動車や燃料・冷却水用ボンブ、暖房換気空調などの幅広い分野で起きている現象であるが、学生にとってはブラシ付きDCモータと比較して制御が複雑であり、技術的にも困難な分野である。そこで、本製作物では、過去にブラシ付きDCモータを活用して製作したEVカートおよびバギーのブラシレスDC化を行うことで、ブラシレスDCモータの仕組み及び制御方法を習得することを目標としている。		栗秋 亮太
6	交流電動機の模型教材の製 作	五十嵐 祐 鎌田 晟也 鈴木 裕大	交流電動機の回転原理を説明するための模型教材を開発した。回転磁界可視化装置は、回転磁界中に心鉄を分布させることで、磁界が回転する様子を目視できるようにした。誘導電動機は、アルミ缶を回転子と見立て、回転であり、アルミ缶を置くことで、その回転する様子から誘導電動機の回転原理を理解できるようにした。		五十嵐 智彦
7	電力・機器マネジメントシス テムの製作	伊波 広大 丸山 恭平 緑川 諒 宮本 卓也	現在、第4次産業革命にあり、AIやロボット、 IoTなどの技術が急速に発展し、日常生活に 普及している状況にある。そこで、ICTを活用 した太陽光パネルの発電状況を遠隔確認でき るとともに、数値での表示だけでなく、LEDによ る色の変化等で視覚的に確認しやすい発電 量の可視化を行模型を製作した。	770-77448 27-14-77448 27-14-77448 27-14-74-74-74-74-74-74-74-74-74-74-74-74-74	若林 革

電子情報技術科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	体感音響振動を用いた音楽 再生	佐久間 慧次自	体感音響振動とは、オーディオ装置によって 再生される音楽やコンサートの音を振動として 身体に伝える音響再生方式である。聴覚を 失った人でも振動により音楽を体感して楽しむ 事ができる。本総合制作は2017年度からの ラーマを引き継ぎ、実施した。今年度は、プロ トタイプ(1号器)から設計変更したトランス デューサを完成させ、難聴者のためのヘッドホ ンアンブを追加し、装置全体の完成を目指し た。	587/18	辻 隆志
2	焦点補助メガネの開発	鈴木 優弥 柳 樹里	人間の目は、年齢の進行とともに水晶体の弾力性が失われ、ピント調整に使われる毛様体も弱ってくる。その結果、40歳頃から近いものが見えにくくなる老眼の症状が表れ、これを補正するために老眼鏡をつけたりはずしたりなどの不便が生じる。そこで、ピント合わせを自動的に補助する老眼鏡の開発を目指した。		辻 隆志
3	10W出力オーディオアンプ システムの 設計・製作	江藤 孝介 清水 拓海 吉武 和輝	本総合制作では「音楽を通じて仲間同志でコミュニケーションを深める」をコンセプトに、カラオケ機能やトーンコントロール機能等を搭載した長大10W出力オーディオアンプシステムの設計・製作をテーマとした。		加瀬 昇
4	ETロボコン競技大会用制御 プログラムの制作	オダヴァルゾルザ 笠川 大稀 加藤 優翔 村杉 風児	ETロボコン競技会終了後にロボコン班全員で 反省会を行った。来年度への引継ぎに向けて 下記3つの課題にそれぞれ取り組むことにし た。 ・開発環境の改善 ・開発界用ブログラムの修正 ・競技会用モデルの修正 本発表では、来年度以降のロボコン班のため にそれぞれ取り組んだ内容について発表す る。	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	野口 和久
5	数値計算ソフトウエアを用い た制御システムの 製作	嶋 寿郷	本テーマの目的は、LEGO MINDSTORMS EV3を用いて、車輪型倒立振子を製作し、装 値計算ソフトウェア MATLAB又は SIMULINKからの制御により、倒立して走行制御ができるシステムの製作を行うことである。 授業との関連については、2年次で行っている ブログラム実習などの授業でEV3を使用しており、当科で学ぶ要素技術を多く含んでいる。		渡邊 正和
6	飛行ロボットコンテストに準 拠した マルチコプターの製作	高橋 英樹 古山 健太 濱野 晶	飛行ロボットコンテストの技術水準に準拠したマルチコブターの設計・製作を目的とした。この製作では、機体の重量を350g以下にすること、荷物搬送が可能であることなどが必要である。製作を通して制御回路、Arduinフライトコントローラ、画像処理に用いるRaspberryPiの活用方法や、Python言語による信号処理技術の習得などを目的とした。	8	渡邊 正和
7	IoT目覚まし時計の設計・作製	岡山 碧斗白島 悠稀	私達は、確実な目覚めを提供する目覚まし時 計の作製を目的として総合制作実習に取り組 んだ。製作に取り掛かった理由は学生や社会 人の方に多い寝坊の予防のためである。目覚 まし時計の設計からプログラミング、電子回路 の組立てまで一貫して進めることで、電子情報 技術科で学んだプログラミングや電子回路組 立て技術を活用できると考えた。	出力 ・	松井 陽平
8	熱中症防止アプリの設計・ 作製	河井 彩奈 菅谷 繁希	現在、建設業界向けに熱中症対策デバイスの開発が進んでいる。体温や心拍数から熱中症 を検知し通知するデバイス、預部やと半身を 冷却するデバイスが存在する。本実習では熱 中症指数の測定と冷却の機能を併せ持つ熱 中症防止デバイスを作製し、携帯端末に通知 するアプリケーションを制作する。	AND THE STATE OF T	松井 陽平
9	ETロボコン競技大会用制御 プログラムの制作 -UnityによるEV3を使用した ミニゲームの制作-	青木 大陸 伊藤 大地 古川 輝	ETロボコン競技会終了後、ゲームや映画といったアミューズメントだけでなく教育、医療など様々な分野で活用されているVR技術を習得するためVRを用いたゲーム制作を行った。制作物はEV3のモデルを用いており、今後、ETロボコンの広報ツールとして活用していく予定である。		野口 和久

住居環境科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	ZEH(Zero Energy House)の 設計	藤吉 航太	ZEHの設計にあたり、基本設計を行い、各種 仕様や設備を考え設計一次エネルギーの指 費量と創エネルギー量の収支をゼロ以下にす る設計を行った。又、今回の設計はコストの制 限を考慮せずZEHの設計における流れとポイ ントを理解する事を目的とする。	17.66 - 5 Jun 18.65 - 5 Jun 18	三好 和人
2	木造3階建て住宅の梁の断 面判定	セイヤー一樹	本造3階建て住宅に作用する各部材の鉛直 情重に耐えうる梁断面を判定するにあたり、本 造3階建て住宅を計画し、作成した図面に基 ついて固定荷重を算出し、検定の公式に当て はめることによって梁の断面算定を行った。課 題を通じて授業で触れることのなかった、大造3 階建て住宅の鉛直荷重の伝わり方を理解し、梁の断面算定を行う上での計算の流れ、梁に かかる部材によっての荷重分布の変わり方を 学ぶことにした。	Think	三好 和人
3	枠組壁工法の模型製作による在来軸組構法との比較研究	川路 天雅	現在の日本の木造住宅建築の構法の一つに「壁面」、「床面」および「天井面」などの面材によって構成し建物を一体化させた構造の枠組壁構法がある。今回、枠組壁構法で造られた住宅建築の「材料」、「構造」、「施工方法」について調べ、理解を深めることを目的とする。 併せて、視覚的に確認し、理解を深められるように構造模型の製作にも取り組む。	1000 1000 1000 1000 1000 1000 1000 100	黒瀬 敏浩
4	鉄筋コンクリート構造設計 ~2階建て事務所の設計~	加藤 大虎 坂東 秀人	近年、構造設計ソフトを使った構造計算がほとんどであり、実際に解析等を手計算することが ほとんどない現状である。このような背景から、 ソフトを使用せず解析することは構造設計の 概念を理解するという観点でみれば重要であ ると考えられる。構造力学で学んだ知識、技能 を活かし、関数電卓を用いて構造計算を行い、構造解析ソフトを使わずに2階建てRC構 造設計の理解を深め、配筋図を作成すること を目標とする。		松村 亮
5	木材に使用する釘、木ねじ のせん断耐力実験	樋口 桃子	ダ、木おじを使った接合は木質構造では最も 一般的である。一面、二面せん断接合の試験 体を制作し、実験方法は万能試験後使用してせん断耐力を測定する。接合具の本数を増 でし、弾性設計の視点から評価する。木研究 では、釘、木おじのせん断耐力が木材に対し てどのような影響を及ぼすのかを試験結果から述べる。		松村 亮
6	合成梁の設計	小倉 海渡熊谷 北斗	鉄筋コンクリートのスラブ又はデッキブレートな どを用いた床スラブをこれを支持する鉄骨の 変を相互にシャコネクタで接合することにより、 変と根スラブが一体となって曲げに抵抗する 構造である合成梁の構造設計を行うことを目 的とした。	E 8 0 0 10 10 10 10 10 10 10 10 10 10 10 10	山田 伸典
7	丸の内フラット化計画	多田 暁子	2008年〜17年に行われた東京駅丸の内口駅 前の整備事業によって、東京駅の正面外観 は、観光スポットに生まれ変わった。一方、高 層ビルが東京駅と皇居の間に割って、東京駅 から皇居への眺望が損なわれてしまっている。 そこで、丸の内駅前広場を皇居の手前まで拡 大させて、「東京駅」と「皇居」をつなぐ動線を より魅力的なものに仕上げようというものであ る。		府川 直人
6	グリットサンド 〜千葉県立中央図書館 増 築計画案〜	小島 海月	千葉県立図書館全体の蔵書所有割合は許容量の約90%に達し、新たに分館の建設が計画されている。そこで、今後も増える本や建物の耐震性能、景観の維持を考慮し、図書館の指性化のために千葉県立中央図書館の増築計画を提案する。計画は、既存の『ブレグリット・システム』の基本ユニットの仕組みを使うことで現在の構造を引き継ぎ、増築部分を連結させる。		府川 直人
7	印旛村を学ぶ資料館の設計	飯塚 駿輝	印旛沼を学ぶ資料館として、印旛沼周辺の歴 史や文化を伝えるための資料や、印旛沼周辺の歴 景や魅力をそろえた施設として資料館を提案 する。訪れた人が新たに印旛沼の歴史と文化 を学び、外とは違う角度で魅力を感じてもらう ことを目的とし展示を行う。また、船着さ場を整 備し浄水設備を内蔵した親水空間をもうけ、在 来種の水生生物を保護する環境作りも計画す る。		府川 直人

生産技術科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	動いて乗れる小型電車の製 作	青島 太平太大 恵貴 康治 康貴	モノづくりへの興味を創出することを目的とした小型電車を製作した。電車は先頭車両、運転車両、客車で構成されており、客車と運転車両には子どもが楽しめるように3種類の音が鳴る音響装置と先頭車両にライトを付けている。各車両を連結し、走行及び音響装置、ライトの試験を行った。		浦辺 義明
2	エアエンジンの製作	スレスタ パビン ビスタ トララム	2年間で学んだことを活かせて、加工や組立に高い精度が求められるエアーエンジンを製作した。各部品は旋盤、フライス盤で製作した。組立・調整を行うことで部品設計の正確性が重要であること。加工精度をあげる難しさを学んだ。		藤武 秀司
3	マグネットクレーンゲームの 製作	石橋 洋彰 岩瀬 昂矢 新 龍矢 小倉 敬弘	PLCプログラムの実務的利用方法を学ぶことを目的としたマグネットクレーンゲーム製作した。難易度が年齢に左右されずに子どもが楽しめることを重点におき、電磁石で鋼球を吊り上げるマグネット式を選択した。吊り上げられた鋼球は、穴のあいた受け皿を3つ通過してアタリとハズレに抽選される。		高橋 麗
4	卓上真空成形機の製作	大木 結策 大木 太 太 一 大木 太 一 日 尾 尾 昭 経 田 野 条 昭 郷 田 町 名 一 町 名 一 町 名 一 の 野 、 田 町 名 の ち の ち の ち の ち の ち の ち の ち の ち の ち の	25期生が製作した筒振りミニカーは、エンジン部分と他部品の接触及び破損が指摘されていた。そのため、エンジンを他から保護するボディの製作を目的として、加熱した樹脂を掃除機で吸引しながら型へ押し当てる真空成形機を製作した。試験運転において設定温度まで樹脂の温度が上昇しないことを確認した。		日熊 義隆
5	安全体験教材の製作	富高 颯人橋本 春瑠	機械加工を学ぶ者の中には、実習における危険を口頭で伝えるだけでは分からない者もいる。そこで実際に危険な状態を可視化し、口頭での説明を補完する教材を作成した。教材はつま先にプラスチックケースを入れたスニーカ及び、安全靴へ質量8kgのおもりを約560mmの高さから自由落下させ、プラスチックケースの破損の可否によって安全具の重要性を学ぶ。		芝原 寛健

メカトロニクス技術科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	自動開閉ロボットハンドの設計・製作	村本 嵩幸 鈴木 大輔 根田 拓実 野口 拓海	本装置はゴムボールを"掴む・離す" ができる五本指のロボットハンドであ る。PLC・タッチパネルにより開閉の 角度制御やパターン運転を行う。		植木 正則 佐藤 玲子 荒居 幹雄 (非常勤)
2	人間の指の動きを模倣する ハンド(人差し指)の設計・製 作	西川 貴司	本装置は五本指ハンドの人指し指の部分を設計・製作した。マイコン制御によりサーボモータ(3軸)を動作させ指の動きを再現している。		植木 正則 佐藤 玲子

電気エネルギー制御科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	インホイールモータを用いた 電動キックボードの製作	小峯 颯斗 橋元 彪去 樋口 諒太朗 柳沢 稜 千葉 流星	小型マイクロモビリティのひとつとして、電動キックボートが注目されている。そこで、インホイールモータを用いた電動キックボードを作製した。モータドライバについてもすべて自作し、既製品と同等の性能を得た。その結果、平地面において平均時速14.4kmで走行することができ、登坂走行も確認できた。	130 131 131 131 131 131 131 131 131 131	栗秋 亮太
2	モデルベース設計に基づく 速度制御系教材の開発	岡田 侑大	5V模型用モータの速度制御系(P制御・PI制御)を、オペアンプ等のアナログ電子回路を用いて構成した。 PIゲインの設計については、モータの各物理定数を実験的に同定したうえで、極指定法を用いてモデルベースで設計した。		五十嵐 智彦
3	IoTを活用した電力管理と照明設備のリニューアル	田添 直也 西村山 聖矢 松西 宗士 西島 修平	AIやロボット、IoTなどの技術の進展を踏まえて、本校の正門に設置されている看板照明設備をIoT化にリニューアルした。照明に利用する電力は、独立型太陽光発電システムにより賄っている。また、照明としての役割だけでなく、温度・湿度等により快適度により照明の色が変化することや、携帯端末により発電状況等を確認できる設備を製作した。	ESP32 Monitor Generating Temperature Discontrol Humidity 関東職業能力開発大学校開業	若林 革
4	オーディオシステムの製作 ープリアンプの製作ー	椎田 智裕	本研究では、オーディオシステムを7年かけて完成させる計画である。1年目はパワーアンプ、2年目はグラフィック・イコライザ、ピークレベル・インディケータの製作を行った。3年目は音の増減、左右バランス、音源の高音・低音の音質調整、音源の選択、音の出力先の切り替えを行うプリアンプの製作を行った。	The same of the sa	川守田 聡
5	三相交流インバータの製作	遠藤 祐生 辻 康平 津田 浩 平間 祐樹	36Vの三相インバータをディスクリート部品により構成した。マイコンはdsPICマイコンを用い、任意の電圧、周波数を出力できるようにした。出力波形については、正弦波出力のほか、汎用インバータ等で広く採用されている、三倍高調波注入方式によっても動作することを確認した。		五十嵐 智彦
6	フードドライヤの製作	鈴木 光	市販されている業務用フードドライヤ (食品乾燥機)は形状が大きく、電源 がAC200Vで駆動させる製品がほと んどである。そこで、卓上などに置くこ とができる電子レンジ程度の大きさ で、AC100Vで運転できる中型業務 用フードドライヤの開発が必要になっ た。今年度は筐体の製作を行った。		川守田 聡

電子情報技術科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	ガードワイヤ用視線誘導標 識の設計・製作	佐藤 陽仁 追田 葉月	国土交通省の直轄高速道路の多くは対面通行道路になっており、昨今この道路での正面衛突事故が増えている1)。この防止対策として「ガードワイヤの敷設」が決定しており、合わせて夜間や悪天候時の視認性を高める視線誘導標識の需要が高まっている。そこで、本テーマではガードワイヤに組み込むことができ、より優れた視認性をそなえた、「ライトストリングを用いた自発光点滅する視線誘導標識」を設計・製作することを目的とする。	X O 2 (1/1-970) 3 (1) 2 (2 (2 (1/1-970) 3 (1)) 2 (2 (2 (1/1-970) 3 (仲谷 茂樹
2	マルチコプタの学習 〜PWM信号、プロペラの回 転数および揚力〜	板井 希実 請川 拓夢 大久保 祐也 佐藤 里歩 山田 朱里	マルチコブタを構成するモータや ESC(Electronic Speed Controller)などは市販 のものを入手できるが、仕組みや電気的な特 性は不明なものがほとんどである。マルチコブ タの飛行制御は、固定翼の飛行機と違いプロ ペラの回転速度を制御することにより行われて いるが、回転速度と揚力の関係について公開 されている資料は少ない。発表ではプロペラ の回転数と揚力の関係の測定について報告 する。	11 185 W 185	辻 隆志
3	ETロボコン競技会用制御プログラムの制作	片個木 佐夕木 田野 正	ETロボコンとは規定の走行体を用いて組込みソフトフェア技術を競うコンテストである。ETロボコンは若手技術者の育成を目的としており、電子情報技術では組込み技術の習得とチームでのシステム開発を経験するために総合制作実習のひとつのテーマとして取り組んでいる。今年度もプライマリークラスにエントリーし、活動を行った。本発表では、大会結果と大会後の活動について報告する。		野口 和久
4	共鳴管スピーカと小型オー ディオアンプの試作	加藤 亮介 神坂 拓満 鈴木 那之	共鳴管スピーカには、より広い帯域の低音を増強できる、広い面積で空間を直接揺らすような低音が出せる、構造がシンブルで作りやすいといった様々な利点がある。そこで、共鳴管の仕組みと今までのアナログ回路の学習を踏まえ、製品の設計製作の一連の作業を学ぶ為、共鳴管スピーカセメーディオアンブの試作を行った。本実習では、安価なスピーカでより良い音響性能を実現できること、また、アンプの基礎を学ぶことができた。		辻 隆志
5	熱中症防止デバイスの作製	木内 亮弥 高橋 颯輝	私達は、熱中症防止デバイス(以下デバイス) の設計・作製を目的に総合制作実習に取り組 んでいる。熱中症患者が減らない現状と、これ から先の夏も気温上昇を免れることはできない と考えたことから、今回の熱中症防止デバイス の製作に至った。熱中症にかかる人数を減ら し、夏を快適に過ごすために、ベスト型のデバ イスを作成しようと考えた。	to the second of	松井 陽平
6	アクリル板を用いたLED光点 表示方式による ニキシー管風時計の作製	佐々木 正太 小倉 辰海	私たちは、アクリル板を用いたLED光点表示方式によるニキシー管風時計(以下ニキシー管風時計とする)の設計・作製を目的に総合制作実習に取り組んでいる。本制作実習ではニキシー管の代わりになる表示器を作製し、その表示器を使用して時計の作製を行う。また、既存品との差別化のため低コスト化かつ小型化を目指す。		松井 陽平
7	FPGAによる画像処理モ ジュールの設計・製作	富 彩香森 剛志	製造工場では、製品外観の欠陥の有無や設計通りの寸法になっているか確かめる外観検査が行われている。一般にはこの検査はPersonal Computer (PC) による画像処理技術により自動化されている。しかしながら、導入コストや設置場所、検査の難易度等により依然人手による検査が多い。そこで、本制作課題では低コストと省スペース化を目的としたField-Programmable Gate Array (FPGA)による小型の画像処理モジュールの開発を行う。なお、本制作は1年目であり、今年度はカメラモジュールからの画像取得と表示および、簡単な画像処理を実装することを目的とする。	TO THE PARTY OF TH	仲谷 茂樹
8	組込みLinuxボードを用いた 自立型走行車の 製作	増岡 晃生	近年、スマートフォンや、IoT機能を有する家 電製品にはOSとして組込みLinuxが使用され ている。また、Raspberry Piに代表される学習 向けの組込みLinuxボードが産業用途として 様々な分野で利用されており、電子情報系の エンジニアにとって必要な技術要素となってい る。そこで本製作では「組込みLinuxボードを 用いた自律型走行車の製作」を通して組込み Linuxの技術を学ぶとともに、自律走行の手段 としてカメラを使用することで画像処理・認識 技術についても習得することとした。		仲谷 茂樹

住居環境科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	建築ビジュアライゼーション のテキスト作成	佐藤 譲	3D 建築ビジュアライゼーションは、建築設計の最先端 テクノロジーである。CGを用いて建物を詳細まで検討したり、周囲の景観・天候・季節も再現するなど、よりリアルなプレゼンテーションが行われる。このプレゼンテーションの内容、作業手順をテキスト化し今後のプレゼンテーションに生かせる資料を作成する。		府川 直人
2	ミニマル建築について 〜アルベルト・カンポ・バザ エの住宅作品を例に〜	荒谷 理沙	「ミニマル建築」の作品を発表している建築家のアルベルト・カンボ・バエザに着目し、彼の設計した住宅作品をテーマに、ミニマルについて考察を行う。 内部に入る光により、空間がどのように変化していくかを3D化したモデルを使用してアニメーションを作成して再現し、内部空間と光の関係について分析を行う。		府川 直人
3	冨津市公共図書館の提案	岩梨 竜也	公立図書館の全国平均設置率は97.7%であるのに対し、千葉県の設置率は91.1%と47都道府県中39位に留まっている。そこで内房線側の市で図書館の設置されていない富津市を計画地に設定した。駅との複合について考え、電車の長い待ち時間に、読書に利用できる図書館の計画である。		府川 直人
4	木造耐力壁の開発	荒居 徹 宇都 真斗 中田 唯人	地震や台風などの自然災害が多い日本において、木造建築の耐震性に関わる大きな要素として耐力壁がある。 今回、耐力壁の設計→施工→試験を繰り返しすことで、強い耐力壁を製作することを目指すとともに、耐力壁についての理解を深めることを目的とする。		黒瀬 敏浩
5	鉄筋コンクリート構造設計 〜大梁の計算式の誘導〜	古川 聖和山田 壮太	鉄筋コンクリート構造設計として大梁の主筋の本数、長さを求める構造設計に着目した。応力が、大梁を構成している各材料にどのように関わっているのかを計算式の誘導をもとに理解して、さらに実施設計の計算図表を作成、利用することにより、大梁としての特徴を把握することにした。	M。	山田 伸典
6	鉄筋コンクリートの鉄筋付着 について	野津 紗貴子中山 千奈	大地震が起こるたびに付着破壊が取り出されている。通し筋、カットオフ筋の付着が有効長さなどを求めるには多くの計算式で検討し様々な基準をクリアしなければならない。建築学会では1999年、2010年、2018年と大梁の付着設計の考え方を「付着検討の計算例」を通して2010年度版、2018年度版を比較しながら検討していく。	コンクリート リブ 鉄筋 (異形鉄筋) E r (引張力) (引持力) (引力力) (引	山田 伸典
7	木造平屋建て住宅の制作	根本 修佑 晴山 悠都 近藤 諒 崑 読 一希 石堂 励	一年次に木造住宅の設計、施工を学んだが、 実際に建物を施工する上で学んだ事がどう関連するのか、身をもって学びたいと思った。また、建築業界では多種多様な職種と協力する事が不可欠であるため、協調性も必要である。これらの背景から、工期を踏まえた上で、木造平屋建て住宅を制作し、一般的な和室と洋室の内装を仕上げる事とした。		三好 和人 松村 亮

生産技術科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	動いて乗れる小型電動バイ クの製作	西賀 慧 増渕 航平 三浦 健人	自動車業界、バイク業界ともにハイブリッド化や電動化が進んでおり、将来的には乗り物の主流になると言われている。製作課題は縦・横・高さが1m程度の小型電動バイクを設定した。フレーム部品及び外装部品を自作し、無負荷状態の走行テストを行った。持続時間1.5時間、最高時速60km/hを確認した。		浦辺 義明
2	遊星歯車機構説明模型の 製作	柳田 樹希 マーラシンハ アカランカ	モータを被駆動負荷に接続する機械 的伝動装置である減速機は、機構の 入力軸と出力軸のトルクと回転速度 を適合させることができる。減速機の 種類は4タイプあり、その中でも入力 軸と出力軸を同軸上に配置でき、機 構本体をコンパクトに作れる遊星歯 車装置を課題に設定し、減速機構の 構造と原理を理解する教材として製 作した。		藤武 秀司
3	小型水平多関節ロボットの 製作	中辻 玲坂井 偉史	産業界では多関節ロボットを搬送・取り付けや組立に利用される技術で、製作した水平多関節ロボットは医療やバイオなどの分野で利用されている。生産技術で学んだ技術を確認しながら実践的技術を製作し、技能向上を図った。製作した水平多関節ロボットは質量3kgのサンプルをリフトアップする評価を行った。		高橋 麗
4	筒振り機関を活用したミニ カーの設計・製作	岸波 哲也 齋籐 英幸 安永 和真	25期生が製作したミニカーの改善案を分担し、各要素を改善したミニカーの製作に取り組んだ。1つ目は外部供給の動力源を内部供給へ変更する。2つ目は動力発生部品の構造を効率化して動力損失を減少させる。3つ目はミニカーの軽量化と構造を左右対称にして直進安定性を向上させる。各テーマは試行錯誤を繰り返し、改善された部品を製作した。		日熊 義隆
5	対戦玩具の設計・製作	木村 陽大高 良一	商品開発の難しさ、製品を期限までに仕上げる重要さを学ぶことを目的に製作した。題材には広い世代の子供たちに親しまれており、イメージしやすいコマを設定した。コマの一部を組み替えて動きが変化する本体とそれを回転させるユニットを製作し、回転時間や部品ごとの動きについて評価した。		日熊 義隆
6	4輪バギーの設計・製作	愛澤 翔 内岡村 新海 小野 桂嵩 風間 祐飛	2年間の実習を通して習得した機械加工、機械設計、TIG溶接、板金の技術を活用することで、各要素を補完する課題として原動機付き自転車のエンジンを活用した4輪バギーを設定した。本年度は部材の強度計算をはじめとするフレームの構造設計からフレームのTIG溶接までを行い、それを評価した。		芝原 寛健

メカトロニクス技術科

No	テーマ名	氏 名	内 容	完成図・写真	指導教員
1	卓上型検温器の製作	上田 堅登	本装置は本科で学んだ技術や知識をもとに設計・製作した、自動で手指消毒、体温表示のできるメカトロ機器である。装置に手をかざすと体温測定を行い、同時に消毒液を噴射する。		植木 正則 佐藤 玲子
2	災害用ロボットの製作	佐々木 悠都	本装置は本科で学んだ技術や知識をもとに設計・製作した、災害用ロボットである。クローラによる移動とロボットハンドのコントロールを無線で行うものである。		植木 正則 佐藤 玲子