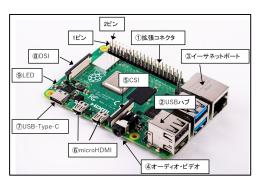


能力開発セミナーのご案内

働くあなたと企業の人材育成を応援します


コース番号 **E3112**

マイコン制御システム開発技術

話題のRaspberry Piを使用して、拡張コネクタのGPIOの仕組みと組込みシステム開発に必要な各種 入出力の仕組みとC言語による制御方法を習得します。

8月 26日 ② ~ 8月28日 录

9:15 ▶ 16:15 (6時間×3日間)

内 容		信号名	衢	号	信号名		内容
出力		3.3V	-1		5V		外部入力
入出力	PC	GPI02/SDA	3	4	5V		外部入力
入出力	PU	GPI03/SCL	5	6	GND		
入出力		GPIO4	7	8	GPIO14/TXD	HART	出力
		GND	9	10	GPIO15/RXD	UARI	入力
入出力		GPIO17	11	12	GPIO18/PWM0	PWM0	出力
入出力		GPIO27	13	14	GND		
入出力		GPIO22	15	16	GPIO23	入出力	
出力		3.3V	17	18	GPIO24		入出力
出力		GPIO10/MOSI	19	20	GND		
入力	SPI	GPI09/MISO	21	22	GPIO25		入出力
出力	1	GPIO11SCLK	23	24	GPIO8/SS0	SPI	出力
		GND	25	26	GPI07/SS1	SPI	出力
予約済み	ı	ID SD	27	28	ID SC		予約済み
入出力		GPI05	29	30	GND		
入出力		GPI06	31	32	GPIO12/PWM0	PWM0	出力
出力	PWM1	GPIO13/PWM1	33	34	GND		
出力	PWM1	GPIO19/PWM1	35	36	GPIO16		入出力
入出力		GPIO26	37	38	GPIO20		入出力
		GND	39	40	GPIO21		入出力

セミナー内容

1. マイコンの概要

- (1) マイコンの構成
 - イ. RaspberryPiの仕様
- (2) マイコンの動作・電気的特性

2. 開発環境

- (1) 開発環境構築
 - イ. デスクトップ画面の構成、Linuxコマンドの使い方
- (2) プログラム開発フロー
- 3. マイコン周辺回路と製作
- (1) システム構成
- (2)入出力回路
 - イ. GPIOの入出力ポート

使用機器等

学習ボード:Raspberry Pi4 Model B、ブレッドボード、 スイッチ、LED、センサ(温度、光他)、カメラ、 キーボード、マウス、モニタ等

- (3) 内蔵周辺機能
 - イ. 外部割込み処理等 ロ. PWM制御

(ソフトウェア方式、ハードウェア方式)

- (4) 周辺回路の製作
 - イ. I2Cバス ロ. SPIバス
 - ハ. RaspberryPi用カメラモジュールの制御

4. 制御システム開発実習

- (1) 計測制御システムプログラム
 - イ、センサ計測プログラム(温度計測、

電圧計測、人感センサー)

5 まとめ

(1) 実習の全体的な講評及び確認・評価

-対象者-

Linuxの操作方法およびC言語の基礎知識(各種制御文等)をお持ちの方

定 員 10名

受 講 料 21,500円

21,500円 (消費税及び教材費込)

会 場 ポリテクセンター中部 (愛知県小牧市下末1636-2)

申 込 方 法 当センターホームページから申込書をダウンロードの上、E-mailでお申込みください。 その他の方法での申し込みをご希望の方は、別途ご相談ください。

ご相談 お問合せ 企画指導部企画課 TEL.0568-79-0555

E-mail: chubu-seminar@jeed.go.jp

能力開発セミナーのご案内

働くあなたと企業の人材育成を応援します

コース番号 E4022

電気・機械技術者のための

計測・制御実践技術

(プログラム開発編) 開発言語:C#

Visual C#の開発環境を利用したプログラム開発手法や、オブジェクト指向プログラミング、 代表的クラスライブラリの利用方法まで、パソコン計測・制御に必要となるプログラミング技法 を習得します。

> 8月 26日 🐼 8月28日 🗗

9:15 ▶ 16:15 (6時間×3日間)

セミナー内容

- 1. 計測・制御システムの概要
- 2. 開発環境構築実習
 - (1) 統合開発環境の導入
 - (2) 統合開発環境の各種機能と環境設定
- 3. 制御プログラミング手法
 - (1) 文法
 - イ. 変数とデータ型
 - 口. 演算子
 - (2)制御構文
 - イ. 分岐処理
 - 口、繰り返し処理
 - (3) オブジェクト指向プログラム
 - (4) 例外処理

- 4. ファイル処理
- 5. I/O制御実習
 - (1) 拡張ボードを制御するAPI関数の利用方法
 - (2) 外部入出力回路の作成と制御実習
 - (3) 応用課題:デジタル入出力モニタ実習

※E404#「電気・機械技術者のための計測・制御実践技 術(GUI開発編)」と同時に受講すると効果的です。

使用機器等

コンテック社製USB接続タイプデジタル入出力ユニット、 デジタル入出力信号モニタアクセサリ、

開発環境(Microsoft Visual Studio)

10名 定 員

28,500円 (消費税及び教材費込)

会 ポリテクセンター中部(愛知県小牧市下末1636-2)

当センターホームページから申込書をダウンロードの上、E-mailでお申込みください。 申込方法 その他の方法での申し込みをご希望の方は、別途ご相談ください。

ご相談 お問合せ 企画指導部企画課 TEL.0568-79-0555

chubu-seminar@jeed.go.jp E-mail:

能力開発セミナーのご案内

働くあなたと企業の人材育成を応援します

コース番号 **E4121**

計測・制御における ソケットインタフェース実践技術

Visual Basic言語によるソケットインタフェースのプログラミング実習を行い、TCP/IPネットワークに対応した計測・制御システムの開発に必要なプログラミング技術を習得します。

9:15 ▶ 16:15 (6時間×3日間)

セミナー内容

1. 生産現場におけるネットワーク活用事例

- (1) 生産現場におけるネットワークの必要性と利用方法
- (2) ネットワークを活用した計測・制御システムの事例

2. TCP/IPの機能とパケット解析

- (1) TCP/IPプロトコル体系における各層の役割について
- (2) ネットワーク診断

3. ネットワークの各種APIの利用方法

(1) TELNET活用実習とパケット解析実習

4. 通信プログラム実習

- (1) ソケットインタフェースについて
- (2) GUIアプリケーションによる ソケットプログラミング開発時の注意点
- (3) スレッド制御
- (4) TCPクライアント・サーバ方式(1:N)
- (5) UDPクライアント・サーバ方式(1:N)
- (6) 制御データ及び計測データとの通信実習

5. 総合実習

(1) チャットアプリケーション構築実習

前提知識

E401#「電気・機械技術者のための計測・ 制御実践技術(プログラム開発編)」を受講 された方、またはVisual Basic言語(.NET Framework2.0以降)の知識がある計測・制 御システム設計・開発者の方

使用機器

開発環境(Microsoft Visual Studio)

講師: (株) インテックス【予定】

定 員 10名

受講料 28,500円 (消費税及び教材費込)

会 場 ポリテクセンター中部(愛知県小牧市下末1636-2)

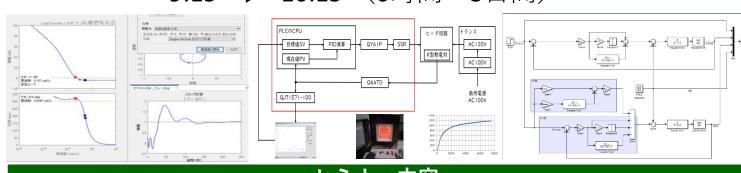
申 込 方 法 当センターホームページから申込書をダウンロードの上、E-mailでお申込みください。 その他の方法での申し込みをご希望の方は、別途ご相談ください。

ご相談 お問合せ 企画指導部企画課 TEL.0568-79-0555

E-mail: chubu-seminar@jeed.go.jp

能力開発セミナーのご案内

働くあなたと企業の人材育成を応援します


コース番号 **E7111**

技術者のためのプロセス制御 <恒温槽の温度制御編>

制御系の設計をするために必要となる古典制御理論の知識を学び、制御系の過渡応答や周波数応答ならびに安定判別法などをMATLAB/Simulinkを用いてシミュレーションにより理解し、フィードバック制御系の解析技術を習得します。また、恒温槽の温度制御実習を通して、PID制御およびアドバンスドPID制御などの仕組みもMATLAB/Simulinkを用いたシミュレーションにより習得します。

10月 8日 **3** ~ 10月10日 **3**

9:15 ▶ 16:15 (6時間×3日間)

セミナー内容

1. 制御系システム特性の表現方法

- (1) ラプラス変換と制御系システムの伝達関数の表現法
- (2) 周波数伝達関数の表現方法と周波数特性解析

2. 制御系システム要素

- (1) 比例要素の性質
- (2) 積分要素(1次遅れ要素)の性質
- (3) 微分要素の性質
- (4) むだ時間要素の性質

3. ブロック線図

(1)システムのブロック線図による表現方法

4. シミュレーション解析

- (1)数値解析シミュレータの構成
- (2) ステップ応答及びインパルス応答
- (3) 周波数応答
- (4) ナイキスト線図/ボード線図による制御系システムの安定判別法

5. PID制御の概要

- (1) PID制御シミュレーション
- (2) PID制御のゲイン余裕と位相余裕算出法

6. PIDシステムのチューニング

- (1) ステップ応答法による制御対象の伝達関数の作成
- (2) 最適なPIDパラメータの算出
- (3) シミュレーションによる検証

使用機器等

制御系設計支援ツール(MATLAB/Simulink)、恒温槽

—対象者—

電気数学や電気回路の基礎知識をを有している方が望ましい

定 員 10名

受 講 料 16,500円 (消費税及び教材費込)

会 場 ポリテクセンター中部(愛知県小牧市下末1636-2)

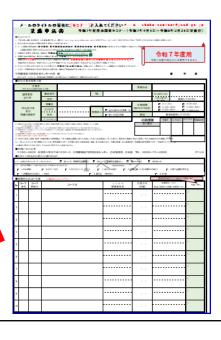
申 込 方 法 当センターホームページから申込書をダウンロードの上、E-mailでお申込みください。 その他の方法での申し込みをご希望の方は、別途ご相談ください。

ご相談 お問合わせ 企画指導部企画課 TEL.0568-79-0555

E-mail: chubu-seminar@jeed.go.jp

お申込み手順

「ポリテク中部」で検索します。



① 在職者の方へ をクリック

② 申込方法をクリック

③Excel形式又はPDF形式をダウンロードし、必要事項をご記入の上、メールに添付してお申し込みください

ä	申込み
間前	講申込書」に必要事項をご記入のうえ、メールにてお申込みください。原則セミナー開始日の3週 まで申込みをお受けしています。(開始3週間を切っていても受付可能な場合がございますので、 ご希望の場合はお問い合わせください。)
*	自動表示版:コース番号を入れるとコース名と開始日時が表示されます
○ 申	込者数が10名以内の場合
O申 ⊙	込者数が10名以内の場合 R7受講申込書(自動表示版10名以内) (<u>69.16 KB</u>) [2]

③ R7受講申込書(自動表示なし11名以上) (106.64 KB)

※ 受講申込書をダウンロードしてお使いください。